Rabu, 02 Mei 2012

Geometri




Geometri (dari bahasa Yunani γεωμετρία; geo = bumi, metria = pengukuran) secara harafiah berarti pengukuran tentang bumi, adalah cabang dari matematika yang mempelajari hubungan di dalam ruang. Dari pengalaman, atau mungkin secara intuitif, orang dapat mengetahui ruang dari ciri dasarnya, yang diistilahkan sebagai aksioma dalam geometri.

[sunting]Geometri awal


Salah satu teori awal mengenai geometri dikatakan oleh Plato dalam dialog Timaeus {360SM) bahwa alam semesta terdiri dari 4 elemen: tanahairudara dan api. Hal tersebut tersebut dimaksud untuk menggambarkan kondisi material padatcairgas dan plasma. Hal ini mendasari bentuk-bentuk geometri: tetrahedron, kubus(hexahedron), octahedron, dan icosahedron dimana masing-masing bentuk tersebut menggambarkan elemen apitanahudara dan air. Bentuk-bentuk ini yang lalu lebih dikenal dengan nama Platonic Solid. Ada penambahan bentuk kelima yaitu Dodecahedron, yang menurut Aristoteles untuk menggambarkan elemen kelima yaitu ether.Catatan paling awal mengenai geometri dapat ditelusuri hingga ke zaman Mesir kuno, peradabanLembah Sungai Indus dan BabiloniaPeradaban-peradaban ini diketahui memiliki keahlian dalamdrainase rawa, irigasi, pengendalian banjir dan pendirian bangunan-bagunan besar. Kebanyakan geometri Mesir kuno dan Babilonia terbatas hanya pada perhitungan panjang segmen-segmengarisluas, dan volume.

Barisan dan Deret Geometri (Ukur / Kali)

  1. BARISAN GEOMETRI
    U1, U2, U3, ......., Un-1, Un disebut barisan geometri, jika

    U1/U2 = U3/U2 = .... = Un / Un-1 = konstanta

    Konstanta ini disebut pembanding / rasio (r)Rasio r = Un / Un-1
    Suku ke-n barisan geometri

    a, ar, ar² , .......arn-1
    U1, U2, U3,......,Un

    Suku ke n Un = arn-1 
    ® fungsi eksponen (dalam n)

  2. DERET GEOMETRIa + ar² + ....... + arn-1 disebut deret geometri
    a = suku awal
    r = rasio
    n = banyak suku


    Jumlah n suku

    Sn = a(rn-1)/r-1 , jika r>1
          = a(1-rn)/1-r , jika r<1
        ® Fungsi eksponen (dalam n)

    Keterangan:

    1. Rasio antara dua suku yang berurutan adalah tetap
    2. Barisan geometri akan naik, jika untuk setiap n berlaku 
      U> Un-1
    3. Barisan geometri akan turun, jika untuk setiap n berlaku
      Un < Un-1
      Bergantian 
      naik turunjika r < 0
    4. Berlaku hubungan Un = Sn - Sn-1
    5. Jika banyaknya suku ganjil, maka suku tengah
                _______      __________
      Ut = 
      Ö U1xUn    = Ö U2 X Un-1      dst.   
    6. Jika tiga bilangan membentuk suatu barisan geometri, maka untuk memudahkan perhitungan, misalkan bilangan-bilangan itu adalah a/r, a, ar
  3. DERET GEOMETRI TAK BERHINGGADeret Geometri tak berhingga adalah penjumlahan dari

    U1 + U2 + U3 + ..............................

    ¥
    å
     Un = a + ar + ar² .........................
    n=1 

    dimana ® ¥ dan -1 < r < 1 sehingga rn ® 0
    Dengan menggunakan rumus jumlah deret geometri didapat :Jumlah tak berhingga    S¥ = a/(1-r)
    Deret geometri tak berhingga akan konvergen (mempunyai jumlah) untuk -1 < r < 1

    Catatan:


    a + ar + ar+ arar.................
    Jumlah suku-suku pada kedudukan ganjil
    a+ar+ar4
    .......                     Sganjil = a / (1-r²)Jumlah suku-suku pada kedudukan genap
    a + ar3 + ar5 + ......                  Sgenap = ar / 1 -r² 

    Didapat hubungan : Sgenap / Sganjil = r

PENGGUNAAN
Perhitungan BUNGA TUNGGAL (Bunga dihitung berdasarkan modal awal)
M0, M1, M2, ............., Mn
M1 = M0 + P/100 (1) M0 = {1+P/100(1)}M0
M2 = M0 + P/100 (2) M0 = {1+P/100(2)} M0
.
.
.
.

Mn =M0 + P/100 (n) M0 ® Mn = {1 + P/100 (n) } M0

Perhitungan BUNGA MAJEMUK (Bunga dihitung berdasarkan modal terakhir)
M0, M1, M2, .........., Mn
M1 = M0 + P/100 . M0 = (1 + P/100) M0
M2 = (1+P/100) M0 + P/100 (1 + P/100) M0 = (1 + P/100)(1+P/100)M0      = (1 + P/100)² M0.
.
.

Mn = {1 + P/100}n M0
Keterangan :
M0 = Modal awalMn = Modal setelah n periodep   = Persen per periode atau suku bungan   = Banyaknya periode
Catatan:
Rumus bunga majemuk dapat juga dipakai untuk masalah pertumbuhan tanaman, perkembangan bakteri (p > 0) dan juga untuk masalah penyusutan mesin, peluruhan bahan radio aktif (p < 0).

[sunting]

0 komentar:

Posting Komentar